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Corrections to scaling in two-dimensional dynamicXY and fully frustrated XY models
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With large-scale Monte Carlo simulations, we investigate the two-dimensional dynamicXY and fully frus-
tratedXY models. Dynamic relaxation starting from a disordered or an ordered state is carefully analyzed. It
is confirmed that there is a logarithmic correction to scaling for a disordered start, but a power-law correction
for an ordered start. Rather accurate values of the static exponenth and the dynamic exponentz are estimated.
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I. INTRODUCTION

In the last decade, many activities have been devote
nonequilibrium relaxation of critical dynamics. Traditionall
it was believed that universal dynamic scaling behavior o
exists in the long-time regime of dynamic evolution. In 198
however, with renormalization group methods Janss
Schaub, and Schmittmann derived a dynamic scaling fo
for the O(N) vector model, which is valid up to themacro-
scopicshort-time regime@1#. The dynamic process they con
sidered is that the system initially at a very high temperat
state with a small or zero magnetization is sudde
quenched to the critical temperature, and then release
dynamic evolution of modelA. It is important that a new
independent critical exponent must be introduced to desc
the scaling behavior of the initial magnetization. This e
plains the anomalous behavior of the remanent magne
tion in spin-glass dynamics@2#.

On the other hand, the power-law decay of the magn
zation in critical dynamics starting from a completely o
dered state was found in rather early times, even thoug
was originally expected only in the long-time regime of d
namic evolution@3,4#, and therefore was not referred to b
the ‘‘short-time’’ behavior. The dynamic exponentz can be
estimated from such a nonequilibrium relaxation.

Inspired and stimulated by these works, in the past ye
nonequilibrium short-time critical dynamics has been s
tematically investigated with Monte Carlo methods@5–11#.
Simulations have been extended from simple spin mod
@9,10,12# to statistical systems with quenched disorder
frustration @13–17#, XY models and Josephson junction a
rays @18–25#, quantum spin systems and lattice gauge th
ries @26–28#, dynamic systems without detailed balan
@29–31#, melting transitions@32–34# and fluid systems@35#
as well as first-order phase transitions@36–41#. More com-
plete list of the relevant references before 1998 can be fo
in Ref. @9#. All these results confirm the existence of a rath
general dynamic scaling form in critical dynamic systems
early times, and approximate scaling behavior in weak fi
order phase transitions. The physical origin of the dynam
scaling behavior is the divergent or very large correlat
time around the phase transition temperatures.

Actually, scaling behavior in nonequilibrium critical sys
tems is not such a unique phenomenon in nature. For
ample, phase ordering dynamics and nonequilibrium crit
1063-651X/2003/68~4!/046120~9!/$20.00 68 0461
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dynamics share some similar features@42#. Spin-glass dy-
namics@2,11,14,43–45# structural glass dynamics, differen
kinds of growth dynamics, and aging phenomena in comp
dynamic systems all may show certain scaling or qua
scaling behavior. Concepts and methods, experiments
theories in these fields benefit from each other.

What we emphasize is that the short-time dynamic sca
form not only is conceptually interesting, but also—mo
interestingly and importantly, provides new techniques
the measurements of both dynamic and static critical ex
nents as well as the critical temperature@3,8,11,46#, for a
review see Ref.@9#. Since the measurements are carried
in the short-time regime, the dynamic approach does not
fer from critical slowing down. Compared with those met
ods developed in equilibrium, e.g., the nonlocal cluster al
rithms, the dynamic approach does study the original lo
dynamics and can be applied to disordered or frustrated
tems. Furthermore, it is very difficult to numerically solv
dynamic equations with a continuous time to the long-tim
regime, but the short-time dynamic approach works w
@10#.

Recently, the idea of extracting information of the equ
librium state from nonequilibrium states has been exten
to first-order phase transitions, and shows its efficiency@36–
41#. Such a methodology should also be very interesting
experiments@47,48#.

In understanding the universal behavior of short-tim
critical dynamics, it is very essential to distinguish the ma
roscopic and microscopic time scales. The dynamic sca
emerges only in themacroscopicshort-time regime, after a
time scaletmic which is large enough in microscopic sens
tmic is not universal. In Monte Carlo simulations,tmic is
rather small for the simple Ising and Potts models, e.g., fr
several to 100 Monte Carlo time steps@9#. However, this will
not be the case for statistical systems with non-near
neighbor interactions, and especially with disorder, frust
tion, or many metastable states. For accurate measurem
of the critical temperatures and critical exponents, corr
tions to scaling must be taken into account.

The XY model and the fully frustratedXY model have
been intensively studied in the past years. TheXY model is
the simplest model exhibiting continuous symmetry and
Kosterlitz-Thouless phase transition in two dimensions, a
may describe the critical behavior of thin films of superflu
helium. The fully frustratedXY model and its variants attrac
©2003 The American Physical Society20-1
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the attention of physicists because of their relevance to
perconducting Josephson junction arrays in a transv
magnetic field. The dynamic approach has been found to
rather efficient and successful in dealing with theXY and
fully frustratedXY models@18–25#.

Bray, Briant, and Jervis have theoretically shown th
there is a logarithmic correction for the two-dimensionalXY
model in the dynamic process starting from a disorde
state@19# ~see also Ref.@49#!. It is believed that the logarith
mic correction is induced by the vortex pair annihilatio
However, the presented numerical data in Ref.@19# cannot
distinguish the twoAnsätze, a possible biggerz or a logarith-
mic correction. On the other hand, there has been some
troversy over the value of the dynamic exponentz ~see, e.g.,
Ref. @20# and references therein!. In the case with a logarith
mic correction to scaling, standard measurements of the c
cal exponents without taking into account the correction
scaling could be correct only asymptotically in the limitt
→`. Therefore, it is very essential to clarify the logarithm
correction.

In a recent paper@21#, careful Monte Carlo simulations
have been performed for the two-dimensional dynamicXY
model at a temperatureT50.89, possible corrections to sca
ing in dynamic processes starting from both ordered and
ordered states are examined, and relevant critical expon
are determined relatively accurately.

In this paper, simulations are extended to several temp
tures below the transition temperatureTKT , and more sys-
tematic analysis of the data will be presented, including t
of the nonequilibrium spatial correlation function. Furthe
more, to reveal the effect of frustration, simulations for t
two-dimensional dynamic fully frustratedXY model have
been carried out. Dynamics of a statistical system with
Kosterlitz-Thouless phase transition and with frustrat
should be rather complicated. Our results show that dyna
scaling behavior does exist, even though corrections to s
ing are much stronger than in the case without frustration
fully understand the scaling behavior, however, the grou
states of the system should be known. Fortunately, this is
case for the fully frustratedXY model we consider in this
paper. Our approach is a first trial in this direction. We a
not only to reveal the dynamic scaling behavior, but also
provide relatively accurate measurements of the critical
ponents, because simulations of the systems with
Kosterlitz-Thouless phase transition and with frustration
equilibrium is rather difficult.

The models and the scaling analysis of the dynamic
havior are described in Sec. II. Numerical simulations
presented in Sec. III. The final section contains the con
sions.

II. SCALING BEHAVIOR AND CORRECTIONS
TO SCALING

A. Models

The two-dimensionalXY model and fully frustratedXY
~FFXY! model can be defined by the Hamiltonian
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kT
H52K(̂

i j &
f i j SW i•SW j , ~1!

where SW i5(Si ,x ,Si ,y) is a planar unit vector at sitei of a
square lattice, the sum is over the nearest neighbors, andT is
the temperature. For theXY model, f i j 51 on all links. A
simple realization of the FFXY model is by takingf i j 521
on half of the vertical links~negative links! and11 on the
others~positive links! @50#, as is shown in Fig. 1. It is well
known that the two-dimensional~2D! XY and FFXY model
undergo a Kosterlitz-Thouless~KT! phase transition. In lit-
erature, the transition temperatureTKT is reported to be be-
tween 0.89 and 0.90 for the 2DXY model @18,22,51,52#,
while between 0.440 and 0.446 for the 2D FFXY mod
@53,54#. For the FFXY model, there is also a second-ord
phase transition in connection with chiral degrees of fr
dom. But in this paper, only the KT transition is concerne

SinceSW i is a planar unit vector, the Hamiltonian does n
contain intrinsic dynamics. In this paper, we consider
Monte Carlo dynamics, which is believed to be in the sa
universality class of the Langevin dynamics. Following Re
@19,21#, we adopt the ‘‘heat-bath’’ algorithm in which a tria
move is accepted with probability 1/@11exp(DE/T)#, where
DE is the energy change associated with the move. T
algorithm is somewhat faster than the standard Metrop
algorithm in a state far from equilibrium. The dynamic pr
cess we simulate is that the system initially in a complet
ordered or disordered state is suddenly quenched to the

FIG. 1. A ground state of the 2D FFXY model. Dotted line
denote negative links, while solid lines correspond to positive lin
The lattice is divided into four sublattices by the orientations
spins.
0-2
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transition temperatureTKT or below, and then released t
dynamic evolution of modelA.

Denoting a spin at the timet asSW i(t), as usual, we define
the magnetization, its second moment, the autocorrelat
and the spatial correlation of theXY model at the timet as

MW ~ t ![K (
i

SW i~ t !L Y L2, ~2!

M (2)~ t ![K F(
i

SW i~ t !G2L Y L4, ~3!

A~ t ![K (
i

SW i~0!•SW i~ t !L Y L2, ~4!

and

C~x,t ![K (
i

SW i~ t !•SW i 1x~ t !L Y L2, ~5!

respectively. HereL is the lattice size.
Due to the frustration of the couplings, spins in t

ground state of the FFXY model do not orient in the sa
direction as in theXY model, rather the lattice is divided int
four sublattices and spins on these four sublattices have
ferent orientations. This is also shown in Fig. 1. Anoth
ground state is obtained by translating the configuration
Fig. 1 by one lattice spacing in the vertical direction.

For the FFXY model, the magnetization is defined as
projection of the spins on the configuration of the grou
state, and the second moment as well as the spatial corre
function are calculated separately for each sublattice. But
autocorrelation function remains the same as in Eq.~4!. Here
it is very important that the definitions of the magnetizati
and its moments, and therefore the macroscopic initial st
all rely on the ground state. If the ground state is not know
the ‘‘order parameter’’ must be defined differently. Then t
dynamic scaling behavior may not be so simple as analy
below.

B. Quench with ordered start

For the dynamic process quenched from a completely
dered state~an ordered start!, e.g.,MW (0)5(1,0), we assume
a universal dynamic scaling form in themacroscopic short-
time regime, for example, for thekth moment of the magne
tization

M (k)~ t,L !5l2kh/2M (k)~l2zt,l21L !, k51,2. ~6!

Here M (t)[M (1)(t) is the x component of the magnetiza
tion vector,h is the usual static exponent,z is the dynamic
exponent, andl is an arbitrary scale factor. Takingl5t1/z

and neglecting the finite size effect, one immediately obta
the power-law behavior

M ~ t !;t2h/2z. ~7!
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To determine z independently, we introduce a time-
dependent Binder cumulant

U~ t,L !5M (2)/M221. ~8!

When the nonequilibrium spatial correlation length at t
time t is much smaller than the lattice sizeL, U;1/Ld.
Simple finite size scaling analysis leads to

U~ t,L !;td/z. ~9!

Hered52 is the spatial dimension.
In general, there may exist corrections to scaling in

early times, for example, the power-law corrections to sc
ing @21#

M ~ t !;t2h/2z~11c/tb!, ~10!

U~ t !;td/z~11c/tb!. ~11!

In the cases of the simple Ising and Potts models, correct
to scaling are rather weak@9#. For the models with many
metastable states such as systems with disorder, frustratio
KT transitions, however, corrections to scaling could
strong. For accurate estimate of critical exponents, one ne
to take into account corrections to scaling.

C. Quench with disordered start

For the dynamic process quenched from a completely
ordered state~a disordered start! with a zero orsmall initial
magnetizationMW (0)5(m0,0), a generalized dynamic sca
ing form can be written down, e.g., for thekth moment of the
magnetization

M (k)~ t,m0 ,L !5l2kh/2M (k)~l2zt,lx0m0 ,l21L !, k51,2.

~12!

Here x0 is an independent exponent describing the sca
behavior ofm0.

For a quench with a disordered start, corrections to s
ing are very strong for the 2DXY model. In Ref.@19#, it is
shown that there should be logarithmic corrections to sc
ing. It is believed that the logarithmic corrections are rela
to the vortex pair annihilation, and do not disappear with
early times@19,49#.

We first consider the case ofm050 and with a sufficiently
large lattice. Assuming a logarithmic correction for the no
equilibrium spatial correlation length, from scaling analys
and finite size scaling analysis, the second moment sho
behave@19# like

M (2)~ t !;$t/@11c ln~ t !#%(22h)/z, ~13!

and the autocorrelation

A~ t !;$t/@11c ln~ t !#%u2d/z. ~14!

Similarly, the scaling behavior of the spatial correlation fun
tion with a logarithmic correction to scaling is
0-3
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C~x,t !5$t/@11c ln~ t !#%2h/zF„x/$t/@11c ln~ t !#%1/z
….

~15!

For a nonzero but sufficiently smallm0, one can deduce
from Eq. ~12!

M ~m0 ,t !;tu, ~16!

u is related tox0 by u5(x02h/2)/z @1,9#. If the lattice size
L is big enough, the above power-law behavior holds in
time scalet0;m0

2z/x0. Typically, the exponentu is positive.
Therefore, this anomalous behavior is also called a crit
initial increase of the magnetization.

Usually, the correction to scaling forM (m0 ,t) is weak
because the nonzerom0 could suppress the effect of the vo
tex pairs. Even if there is a correction, it does not affect
much our estimate of the dynamic exponentsz andh, for the
value ofu usually is rather small.

III. NUMERICAL SIMULATIONS

In order to detect any corrections to scaling and obt
accurate values of the critical exponents, we have perform
the simulations up tot510 240 Monte Carlo time steps wit
a lattice sizeL5256. An exceptional case is for the diso
dered start with smallm0, where it is only up tot51000. To
investigate the finite size effect, some simulations are a
performed for L5128 and 512 maximally tot540 960.
Samples of the initial configurations for averaging are fro
12 000 to 24 000, depending on the models, temperatu
and initial states. To estimate the errors, samples are div
into some subsamples. In addition, errors induced by fluc
tions along the time direction are also taken into accoun

A. Quench with ordered start for XY model

In Figs. 2 and 3, the Binder cumulant and magnetizat
of the 2D dynamicXY model with an ordered start are di

FIG. 2. The time-dependent Binder cumulant of the 2D dynam
XY model with an ordered start. Solid lines are for temperatu
T50.90, 0.89, 0.80, and 0.70~from above! with a lattice sizeL
5256. The dashed line shows a power-law fit forT50.80. The
crossed line is obtained withL5128 for T50.89.
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played with solid lines on a log-log scale. To uncover po
sible corrections to scaling, we measure the slope of
curves ofU(t) andM (t) in a time interval@ t1 ,10 240#, with
t1 varying from 50 to 800. The results are listed in Table

For the Binder cumulantU(t), the slope for differentt1
fluctuates within 0.5%, comparable to statistical erro

TABLE I. The slope of the curves ofU(t), M (t), A(t), and
M (2)(t) in Figs. 2–5 measured in a time interval@ t1 ,10 240# for the
2D dynamicXY model. The transition temperatureTKT is believed
to be between 0.90 and 0.89.

t1 T50.90 0.89 0.80 0.70

50 1.005 0.999 1.000 0.998
100 1.004 0.997 0.999 0.997

U(t) 200 1.002 0.995 0.999 0.996
400 1.001 0.995 1.001 0.995
800 1.000 0.997 1.004 0.995

50 0.0623 0.0592 0.0452 0.0365
100 0.0620 0.0589 0.0450 0.0363

M (t) 200 0.0618 0.0587 0.0448 0.0361
400 0.0617 0.0585 0.0446 0.0360
800 0.0616 0.0584 0.0444 0.0359

50 0.640 0.631 0.583 0.563
100 0.643 0.634 0.586 0.566

A(t) 200 0.645 0.636 0.589 0.570
400 0.648 0.639 0.592 0.574
800 0.651 0.643 0.596 0.579

50 0.771 0.765 0.774 0.778
100 0.773 0.767 0.776 0.781

M (2)(t) 200 0.776 0.770 0.777 0.784
400 0.779 0.772 0.780 0.787
800 0.783 0.778 0.784 0.792

c
s

FIG. 3. The magnetization of the 2D dynamicXY model with an
ordered start. Solid lines are for temperaturesT50.90, 0.89, 0.80,
and 0.70~from below! with a lattice sizeL5256. The dashed line
shows a power-law fit forT50.90. Dots fitted to the solid lines ar
with power-law corrections to scaling. The crossed line is obtain
with L5128 for T50.89.
0-4
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TABLE II. The extracted exponents for the 2D dynamicXY model after taking into account the powe
law corrections forM (t) with an ordered start, and logarithmic corrections forM (2)(t) and A(t) with a
disordered start.h/2z in the third row forM (t) is obtained with a fixed correction exponentb51. The value
z1 of the dynamic exponentz is estimated fromd/z, h is calculated fromh/2z by takingz1 as input,z2 is
from (d2h)/z with h as input, andz3 is calculated fromd/z2u andu.

T50.90 0.89 0.80 0.70

U(t) d/z 1.000~10! 0.995~5! 0.999~4! 0.995~5!

z1 2.00~2! 2.01~1! 2.00~1! 2.01~1!

M (t) h/2z 0.0614~4! 0.0581~2! 0.0441~3! 0.0358~2!

b 1.13 1.03 0.95 1.07
h/2z 0.0611 0.0580 0.0442 0.0357

Fixed b 1 1 1 1
h 0.246~3! 0.234~2! 0.176~2! 0.144~1!

Ref. @51# h 0.239 0.229 0.179 0.146

M (2)(t) (d2h)/z 0.860~12! 0.877~9! 0.897~10! 0.920~8!

z2 2.04~3! 2.01~2! 2.03~2! 2.02~2!

A(t) d/z2u 0.756~5! 0.738~4! 0.711~5! 0.695~6!

M (m0 ,t) u 0.241~2! 0.249~2! 0.263~4! 0.280~4!

z3 2.01~2! 2.02~2! 2.05~2! 2.05~2!
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Therefore, corrections to scaling are negligible here. Eve
we fit the curves with theAnsatzin Eq. ~11!, it gives the
same results as without corrections to scaling. In Fig. 2,
dashed line shows a power-law fit to the curve ofT50.80.
The fit is almost perfect starting fromt550.

For the magnetizationM (t), however, the slope for dif-
ferent t1 shows a definite decreasing trend. This trend co
induce an error of 2% or 3% in the measurements of
critical exponents. In Fig. 3, the dashed line is a power-l
fit to the curve of T50.90. Obviously, the curve ofT
50.90 deviates visibly from the power-law behavior in t
first some hundred time steps. To describe the correction
scaling, we fit the curves to Eq.~10!. In Fig. 3, dots represen
the curves with the corrections to scaling, and fit nicely
the simulation data~solid lines! starting already fromt
520. The resulting values ofh/2z andb are listed in the first
two rows of the sectorM (t) in Table II.

Looking at the values ofb for different temperatures, on
finds that they are around 1. One may wonder whether
correction exponentb here is ‘‘universal’’ or not. We have
performed the fitting with a fixedb51 for all temperatures
The corresponding values ofh/2z are given in the third row
of the sectorM (t) in Table II. Within errors, they are con
sistent with those values without fixingb. Therefore, the cor-
rection exponentb may be indeed universal for differen
temperatures.

To investigate the finite size effect, we have simulated
dynamic process for the temperatureT50.89 with a lattice
size L5128. The Binder cumulant and magnetization ha
been plotted with crossed lines in Figs. 2 and 3. For co
parison, the Binder cumulant has been divided by a facto
4. Up to the timet52560, the curves forL5128 and 256
overlap almost completely. Since the time scale for a fin
system is;Lz andz is about 2, we conclude that the finit
04612
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size effect forL5256 up tot510 240 should be negligibly
small in our simulations.

In Table II, the dynamic exponentz and static exponenth
calculated fromd/z and h/2z are listed, and values ofh
estimated from simulations in equilibrium are taken fro
Ref. @51# for comparison. The dynamic exponentz is very
close to the theoretical valuez52. Ourh is somewhat big-
ger than that in Ref.@51# at temperatures aroundTKT , but
smaller at lower temperatures. If we linearly interpolate t
value of h to T50.8933, it is 0.238(3), about 2% smaller
than the value 0.243(4) in a recent paper@52#. But these two
values are still consistent if the errors are taken into acco

FIG. 4. The autocorrelation of the 2D dynamicXY model with
a disordered start. Solid lines are for temperaturesT50.90, 0.89,
0.80, and 0.70~from below!. The dashed line shows a power-law
to T50.70. Dots fitted to the solid lines are with logarithmic co
rections to scaling. But the slope of the dashed line is 0.579,
from 0.695 with a logarithmic correction to scaling.
0-5
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B. Quench with disordered start for XY model

In Figs. 4 and 5, the autocorrelation and the second
ment of the 2D dynamicXY model with a disordered star
are displayed on a log-log scale. Looking at the curves
eyes, they are not too far from a power-law behavior. In F
4, for example, the dashed line shows a power-law fit to
curve ofT50.70. It seems that the fit is rather good starti
from t;800, but the situation is actually not so simple.

To reveal the corrections to scaling, we have also m
sured the slope of the curves ofA(t) andM (2)(t) in a time
interval @ t1 ,10 240#, with t1 varying from 50 to 800. The
results are listed in Table I. For bothA(t) and M (2)(t), the
slope shows an increasing trend. The difference am
slopes with differentt1 is about 2% or 3%, comparable wit
that for M (t) in the preceding section. If one fits the curv
with power-law corrections to scaling, however, the corr
tion exponentb is rather small. According to the argument
Ref. @19#, the corrections are logarithmic, i.e., the limitin
case ofb→0. In Fig. 4, dots represent the curves with t
logarithmic corrections to scaling, and fit to the numeric
data ~solid lines! from rather early times. In Table II, th
resulting values of (22h)/z andd/z2u are given.

It is very important to observed that the slope of a pow
law fit in a time interval of@800,10 240# as shown with the
dashed line in Fig. 4 is still different by 10–15% from th
with the logarithmic corrections to scaling. The logarithm
correction is so strong such that the effective exponent
tained with a power-law fit would be correct only in the lim
of t→`. In the measurements of the critical exponen
therefore, it is extremely important to take into account
corrections to scaling.

To further confirm and clarify the logarithmic correction
to scaling, we plot the data collapse of the nonequilibriu
spatial correlation functionC(x,t) in Fig. 6. Taking z
52.01, h50.234, andc50.704 obtained fromM (2)(t) as
input, data of different timet rescaled suitably according t
Eq. ~15! collapse nicely to the curve oft5160, except for
some departure fort,100.

FIG. 5. The second moment of the 2D dynamicXY model with
a disordered start. Crossed, circled, dashed, and solid lines ar
temperaturesT50.90, 0.89, 0.80, and 0.70, respectively.
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In principle, the dynamic exponentz and the static expo-
nenth as well as the constantc may be also extracted from
the data collapse ofC(x,t). But the accuracy is not as hig
as in the measurements fromA(t) andM (2)(t).

To complete our investigation, especially to verify th
scaling behavior ofA(t) with an exponentd/z2u, we fi-
nally perform simulations with a disordered start but a sm
nonzero initial magnetizationm0. Since we need a sma
initial magnetizationm0 and therefore suffer from large fluc
tuation in longer times, the simulations are performed o
up to t51000. In Fig. 7,M (m0 ,t) is displayed with solid
lines on log-log scale. From these data, we can not dete
logarithmic correction. In a time interval@100,1000#, direct
measurements of the slope yield the same exponents as
a power-law correction.

for
FIG. 6. Data collapse of the correlation functionC(x,t) of the

2D dynamicXY model with a disordered start. Solid lines are f
t520, 40, 80, 160, 320, 640, 1280, 2560, 5120, and 10 240~from
left!. Circles, squares, diamonds, triangles up, triangles left,
angles down, triangles right, pluses, and crosses fitted to the c
of t5160 are curves oft520, 40, 80, 320, 640, 1280, 2560, 512
and 10 240, but rescaled according to Eq.~15! with z52.01, h
50.234, andc50.704.

FIG. 7. The initial increase of the magnetization of the 2D d
namic XY model with a disordered start. The initial values ofm0

for temperaturesT50.90, 0.89, 0.80, and 0.70 are 0.008, 0.00
0.005, and 0.003, respectively.
0-6
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In Table II, the dynamic exponentz extracted fromA(t),
M (2)(t), andM (m0 ,t) is given. The values are bigger than
by 2% or 3%. This probably indicates that the logarithm
correction is still not perfect in the time intervals we sim
late.

In general, for the quench with an ordered start, corr
tions to scaling are stronger at temperatures aroundTKT ,
while for the quench with a disordered start, corrections
scaling are stronger at lower temperatures. These phenom
are understandable since the vortices and vortex pairs pla
essential role around the KT transition temperature.

C. Quench with ordered start for FFXY model

In Figs. 8 and 9, the Binder cumulant and magnetizat
of the 2D dynamic FFXY model with an ordered start a
displayed on a log-log scale. To uncover possible correcti

FIG. 8. The time-dependent Binder cumulant of the 2D dynam
FFXY model with an ordered start. Solid lines are for temperatu
T50.446, 0.440, 0.40, and 0.30~from above!. Dashed lines show
power-law fits toT50.30 and 0.40~from below!. Dots are with
power-law corrections to scaling forT50.440 and 0.446~from be-
low!. The crossed line is obtained withL5128 for T50.440.

FIG. 9. The magnetization of the 2D dynamic FFXY model w
an ordered start. Solid lines are for temperaturesT50.446, 0.440,
0.40, and 0.30~from below!. Dots fitted to the solid lines are with
power-law corrections to scaling. The crossed line is obtained w
L5128 for T50.440.
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to scaling, we again measure the slope of the curves ofU(t)
and M (t) in a time interval@ t1 ,10 240#, with t1 varying
from 50 to 800. The results are listed in Table III.

For the Binder cumulant, as shown by the dashed line
Fig. 8, the corrections to scaling are small forT50.40 and
0.30. But forT50.446 andT50.440, there exist some. In
addition, the resulting exponentd/z and the correction expo
nentb for T50.440 fluctuate a little, depending on the tim
interval @ t1,10 240# in which fitting is carried out. But the
universal valueb51 is still rather reasonable. The fit with
power-law correction to scaling is shown with dots in Fig.
The final values of the exponentd/z are listed in TableIV.
Here the values ofd/z for T50.446 and 0.440 are estimate
with a fixed correction exponentb51, and the errors include
those with an unfixedb.

For the magnetization, the corrections to scaling dep
also on the temperatures. The higher the temperature is
stronger the correction to scaling will be. The fit to a pow
law correction to scaling forT50.30 and 0.40 yields a cor
rection exponentb very close to 1. But the resulting value
of h/2z andb for T50.446 and 0.440 fluctuate for differen
time intervals @ t1,10 240# in which fitting is carried out.
Therefore, we have additionally performed some simulatio
for T50.440 and 0.446 withL5512 up to the timet
540960. As is discussed in Sec. III A and this section,

TABLE III. The slope of the curves ofU(t) andM (t) in Figs. 8
and 9 measured in a time interval@ t1 ,10 240# for the 2D dynamic
FFXY model. The transition temperatureTKT is believed to be be-
tween 0.446 and 0.440.

t1 T50.446 0.440 0.40 0.30

50 1.034 1.014 1.011 1.009
100 1.031 1.011 1.010 1.007

U(t) 200 1.028 1.007 1.009 1.007
400 1.025 1.003 1.010 1.007
800 1.025 0.999 1.012 1.008

50 0.0695 0.0563 0.0349 0.0212
100 0.0689 0.0556 0.0345 0.0211

M (t) 200 0.0683 0.0547 0.0342 0.0210
400 0.0676 0.0537 0.0340 0.0209
800 0.0668 0.0527 0.0338 0.0209

TABLE IV. The extracted exponents for the 2D dynamic FFX
model after taking into account the power-law corrections forM (t)
andU(t) with an ordered start. The correction exponent is fixed
be b51. The dynamic exponentz is estimated fromd/z; h is
calculated fromh/2z by takingz as input.

T50.446 0.440 0.40 0.30

U(t) d/z 1.019~6! 0.994~10! 1.010~3! 1.007~3!

z 1.96~1! 2.01~2! 1.98~1! 1.99~1!

M (t) h/2z 0.0581~18! 0.0506~4! 0.0334~3! 0.0207~2!

h 0.228~7! 0.203~3! 0.132~2! 0.0824~9!

Ref. @55# h 0.196 0.122 0.064

c
s

h
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results withL5512 tend to confirm that the correction e
ponentb takes a universal valueb51, even though it seem
not very clear forT50.446. Therefore, the values given
Table IV are with a fixedb51, but the errors include thos
with an unfixedb, and with different lattices.

We have also simulated the dynamic process for the t
peratureT50.440 with a lattice sizeL5128. The Binder
cumulant and magnetization have been plotted with cros
lines in Figs. 8 and 9. Analyzing the data with differentL
carefully, we conclude that the finite size effect forL5256
up to t510 240 is negligible small.

In Table IV, the dynamic exponentz and static exponen
h calculated fromd/z andh/2z are listed, and values ofh
estimated from simulations in equilibrium are taken fro
Ref. @55# for comparison. The dynamic exponentz is also
very close to the valuez52. For T50.446, the valuez
51.96(1) should indicate that the transition temperatureTKT
may be slightly below 0.446. Our valueh is bigger than that
in Ref. @55#.

IV. CONCLUSIONS

In conclusions, with large-scale Monte Carlo simulatio
we have investigated corrections to scaling in the none
. B

E
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librium dynamic processes starting from both ordered a
disordered states for the two-dimensionalXY and FFXY
models. The results confirm that there is a logarithmic c
rection to scaling in case of starting from a disordered st
but a power-law correction in case of starting from an
dered state. Rather accurate values of the static exponeh
and the dynamic exponentz have been obtained. The corre
tion exponentb in the case with an ordered start is about
and the estimated dynamic exponentz is very close to 2. The
static exponenth carries an error of about 1%~somewhat
bigger for the FFXY model at the temperatureT50.446).
The values ofz estimated from the dynamic process with
disordered start are slightly bigger than 2, but it should o
indicate that the logarithmic corrections to scaling have
been perfect in the time interval we simulate.

Since the dynamic process starting from a disordered s
for the FFXY model is rather complicated, we have not be
able to understand it, and further investigation is needed
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